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Week 10:  ANOVA 

Goals • Use R to perform analysis of variance (ANOVA) to compare the 
means of multiple groups. 

• Perform Tukey-Kramer tests to look at unplanned contrasts 
between all pairs of groups. 

• Use Kruskal-Wallis tests to test for difference between groups 
without assumptions of normality. 

Learning the Tools 

 For the examples in this tutorial, we will again return to the Titanic 
data set. We’ll group passengers by the passenger class they travelled 
under (a categorical variable) and ask whether different passenger 
classes differed in their mean age (a numerical variable).  

First, load the data. 

> titanicData <- read.csv("Data/titanic.csv") 

Let’s first look at the data to get a sense of how well it fits the 
assumptions of ANOVA. Multiple histogram are useful for this 
purpose. As we saw last week, we can use ggplot() and facets to 
make this plot: 

> library(ggplot2) 
>  
> ggplot(titanicData, aes(x = age)) +    
  geom_histogram() +  
  facet_wrap(~ passenger_class, ncol = 1) 
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These data look sufficiently normal and with similar spreads that 
ANOVA would be appropriate. 

To confirm these visual impressions, it would be useful to construct a 
table of the means and standard deviations of each group. There are 
numerous ways to do this in R, but one of the neatest is uses functions 
from the package dplyr. If you have not done so yet, install the 
dplyr package from the “Packages” tab in RStudio. Then load the 
dplyr package with library(). 

> library(dplyr) 

group_by() The package dplyr has several useful features for manipulating data 
sets. For our current purposes, we will find two functions particularly 
useful: group_by() and summarise(). These two functions are well 
named and work together well, first to organize the data by groups, 
and second to summarize the results for each group.  

First, use group_by() to organize your data frame by the appropriate 
grouping variable. For example, here we want to organize the 
titanicData by passenger_class: 

> titanic_by_passenger_class <- group_by(titanicData,passenger_class) 
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summarise() After applying group_by() to a data frame, we can summarize the 
data using summarise(). (The “s” in summarise() is not a typo—the 
creator of the package is from New Zealand.)  With summarise(), we 
can apply any type of function that summarizes data (e.g. mean(), 
median(), var(), etc.), and receive that summary group by group. 
For example, to calculate the mean age of each passenger_class, 
we can use: 

> summarise(titanic_by_passenger_class, group_mean 
= mean(age, na.rm=TRUE)) 

# A tibble: 3 × 2 
  passenger_class group_mean 
           <fctr>      <dbl> 
1             1st   39.66777 
2             2nd   28.30031 
3             3rd   24.51966 

As input, we give the name of the grouped table created by 
group_by() and the function we want to apply to each group. In this 
case we used mean(age, na.rm=TRUE). “group_mean” is a name we 
give to that summary variable (it could have been any name we 
wanted). The output looks like a table and includes the names of the 
groups being summarized. (A “tibble” is not how New Zealanders 
spell “table”, but is a type of table like a data frame.) “3 x 2” here 
refers to the number of rows x columns in the “tibble” output. 

We can give summarise()many summary functions at once, and it will 
create columns in the output table for each one. For example, if we 
want to output both the mean and the standard deviation, we can 
add sd = sd(age, na.rm=TRUE) to the function above.  

> summarise(titanic_by_passenger_class, group_mean 
= mean(age, na.rm=TRUE), group_sd = sd(age, 
na.rm=TRUE)) 

# A tibble: 3 × 3 
  passenger_class group_mean group_sd 
           <fctr>      <dbl>    <dbl> 
1             1st   39.66777 14.93044 
2             2nd   28.30031 13.00764 
3             3rd   24.51966 11.33059 

Note that the standard deviations are very similar, which means that 
these data fit the equal variance assumption of ANOVA. 

ANOVA Analysis of variance (or ANOVA) is not quite as simple in R as one 
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might hope. Doing ANOVA takes at least two steps. First, we fit the 
ANOVA model to the data using the function lm(). This step carries 
out a bunch of intermediate calculations. Second, we use the results 
of first step to do the ANOVA calculations and place them in an 
ANOVA table using the function anova(). The function name lm() 
stands for “linear model”; this is actually a very powerful function that 
allows a variety of calculations. One-way ANOVA is a type of linear 
model.  

lm() The function lm() needs a formula and a data frame as arguments. 
The formula is a statement specifying the “model” that we are asking 
R to fit to the data. A model formula always takes the form of a 
response variable, followed by a tilde(~), and then at least one 
explanatory variable. In the case of a one-way ANOVA, this model 
statement will take the form  

        numerical_variable ~ categorical_variable.  

For example, to compare differences in mean age among passenger 
classes on the Titanic, this formula is 

    age ~ passenger_class. 

This formula tells R to “fit” a model in which the ages of passengers 
are grouped by the variable passenger_class.  

The name of the data frame containing the variables stated in the 
formula is the second argument of lm(). Finally, to complete the 
lm() command, it is necessary to save the intermediate results by 
assigning them to a new object, which anova() can then use to make 
the ANOVA table. For example, here we assign the results of lm() to 
a new object named “titanicANOVA”: 

> titanicANOVA <- lm(age ~ passenger_class, data = titanicData) 

anova() The function anova() takes the results of lm() as input and returns an 
ANOVA table as output: 

> anova(titanicANOVA) 

Analysis of Variance Table 
 
Response: age 
                 Df Sum Sq Mean Sq F value    Pr(>F)     
passenger_class   2  26690 13344.8  75.903 < 2.2e-16 *** 
Residuals       630 110764   175.8                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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This table shows the results of a test of the null hypothesis that the 
mean ages are the same among the three groups. The P-value is very 
small, and so we reject the null hypothesis of no differences in mean 
age among the passenger classes. 

 

Tukey-Kramer 
test 

A single-factor ANOVA can tell us that at least one group has a 
different mean from another group, but it does not inform us which 
group means are different from which other group means. A Tukey-
Kramer test lets us test the null hypothesis of no difference between 
the population means for all pairs of groups. The Tukey-Kramer test 
(also known as a Tukey Honest Significance Test, or Tukey HSD), is 
implemented in R in the function TukeyHSD().  

We will use the results of an ANOVA done with lm() as above, that 
we stored in the variable titanicANOVA. To do a Tukey-Kramer test 
on these data, we need to first apply the function aov() to 
titanicANOVA, and then we need to apply the function TukeyHSD to 
the result. We can do this in a single command: 

> TukeyHSD(aov(titanicANOVA)) 

  Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = titanicANOVA) 
 
$passenger_class 
              diff        lwr        upr     p adj 
2nd-1st -11.367459 -14.345803  -8.389115 0.0000000 
3rd-1st -15.148115 -18.192710 -12.103521 0.0000000 
3rd-2nd  -3.780656  -6.871463  -0.689849 0.0116695 

The key part of this output is the table at the bottom. It estimates the 
difference between the means of groups (for example, the 2nd 
passenger class compared to the 1st passenger class) and calculates a 
95% confidence interval for the difference between the corresponding 
population means. (“lwr” and “upr” correspond to the lower and 
upper bounds of that confidence interval for the difference in means.) 
Finally, it give the P-value from a test of the null hypothesis of no 
difference between the means (the column headed with “p adj”). In 
the case of the Titanic data, P is less than 0.05 in all pairs, and we 
therefore reject every null hypothesis. We conclude that the 
population mean ages of all passenger classes are significantly 
different from each other. 
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Kruskal-Wallis 

 

A Kruskal-Wallis test is a non-parametric analog of a one-way ANOVA. 
It does not assume that the variable has a normal distribution. 
(Instead, it tests whether the variable has the same distribution with 
the same mean in each group.) 

To run a Kruskal-Wallis test, use the R function kruskal.test(). The 
input for this function is the same as we used for lm() above. It 
includes a model formula statement and the name of the data frame 
to be used.  

> kruskal.test(age ~ passenger_class, data = 
titanicData) 

 
 Kruskal-Wallis rank sum test 
 
data:  age by passenger_class 
Kruskal-Wallis chi-squared = 116.08, df = 2, p-
value < 2.2e-16 

You can see for the output that a Kruskal-Wallis test also strongly 
rejects the null hypothesis of equality of age for all passenger class 
groups with the Titanic data. 
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Questions  
1. The European cuckoo does not look after its own eggs, but instead lays them in the 
nests of birds of other species. Previous studies showed that cuckoos sometimes have 
evolved to lay eggs that are colored similarly to the host bird species' eggs. Is the same 
true of egg size -- do cuckoos lay eggs similar in size to the size of the eggs of their 
hosts? The data file "cuckooeggs.csv" contains data on the lengths of cuckoo eggs laid 
in the nests of a variety of host species. Here we compare the mean size of cuckoo eggs 
found in the nests of different host species.  

a. Plot a multiple histogram showing cuckoo egg lengths by host species. 

b. Calculate a table that shows the mean and standard deviation of length of 
cuckoo eggs for each host species. 

c. Look at the graph and the table. For these data, would ANOVA be a valid 
method to test for differences between host species in the lengths of cuckoo 
eggs in their nests? 

d. Use ANOVA to test for a difference between host species in the mean size of 
the cuckoo eggs in their nests. What is your conclusion? 

e. Assuming that ANOVA rejected the null hypotheses of no mean differences, 
use a Tukey-Kramer test to decide which pairs of host species are 
significantly different from each other in cuckoo egg mean length. What is 
your conclusion? 

 

2. The pollen of the maize (corn) plant is a source of food to larval mosquitoes of the 
species Anopheles arabiensis, the main vector of malaria in Ethiopia. The production of 
maize has increased substantially in certain areas of Ethiopia recently, and over the 
same time period, malaria has entered in to new areas where it was previously rare. This 
raises the question, is the increase of maize cultivation partly responsible for the 
increase in malaria? 

One line of evidence is to look for an association between maize production and 
malaria incidence at different geographically dispersed sites (Kebede et al. 2005). The 
data set "malaria vs maize.csv" contains information on several high-altitude sites in 
Ethiopia, with information about the level of cultivation of maize (low, medium or high 
in the variable maize_yield) and the rate of malaria per 10,000 people 
(incidence_rate_per_ten_thousand). 

a. Plot a multiple histogram to show the relationship between level of maize 
production and the incidence of malaria.  
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b. ANOVA is a logical choice of method to test differences in the mean rate of 
malaria between sites differing in level of maize production. Calculate the 
standard deviation of the incidence rate for each level of maize yield. Do 
these data seem to conform to the assumptions of ANOVA? Describe any 
violations of assumptions you identify. 

c. Compute the log of the incidence rate and redraw the multiple histograms 
for different levels of maize yield. Calculate the standard deviation of the log 
incidence rate for each level of maize yield. Does the log-transformed data 
better meet the assumptions of ANOVA than did the untransformed data?  

d. Test for an association between maize yield and malaria incidence. 

3. Animals that are infected with a pathogen often have disturbed circadian rhythms. (A 
circadian rhythm is an endogenous daily cycle in a behavior or physiological trait that 
persists in the absence of time cues.) Shirasu-Hiza et al. (2007) wanted to know whether 
it was possible that the circadian timing mechanism itself could have an effect on 
disease. To test this idea they sampled from three groups of fruit flies: one "normal", 
one with a mutation in the timing gene tim01, and one group that had the tim01 
mutant in a heterozygous state. They exposed these flies to a dangerous bacteria, 
Streptococcus pneumoniae, and measured how long the flies lived afterwards, in days. 
The date file "circadian mutant health.csv" shows some of their data. 

a. Plot a histogram of each of the three groups. Do these data match the 
assumptions of an ANOVA? 

b. Use a Kruskal-Wallis test to ask whether lifespan differs between the three 
groups of flies. 


